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Magnetic elastica with spontaneous magnetization and superparamagnetic properties are considered. Ob-
tained solutions illustrate the characteristic transformations of their shapes as spontaneous magnetization in-
creases. Solutions are selected on the basis of the stability analysis and results of numerical simulations. A
different mechanism of the magnetic relaxation in suspension of ferromagnetic filaments by migration of a loop
with antiparallel to the field magnetization is predicted.
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I. INTRODUCTION

Recently created flexible magnetic filaments �1,2� possess
interesting properties. They are considered as micromechani-
cal sensors �1,3�, mixers for microfluidics �4,5�, mi-
croengines driven by an ac external field �6,7� and others.
Usually, magnetic filaments are considered as superparamag-
netic rods which do not have permanent magnetic moments.
Nevertheless, magnetic filaments with spontaneous magneti-
zation exist in nature—magnetotactic bacteria use their mag-
netic compass to navigate in the magnetic field of the Earth
�8,9�. Magnetic filaments also can have remnant magnetiza-
tion due to the magnetodipolar interaction between linked
superparamagnetic particles.

Equilibrium shapes of superparamagnetic and ferromag-
netic filaments can be found based on the Kirchhoff model of
elastic rods, taking into account its magnetic properties
�10,11�. These shapes correspond—in the case of superpara-
magnetic filaments—to the hairpins observed in experiments
�1,12� and which are used as micromechanical sensors �13�.
Ferromagnetic filaments form loops with the direction of the
magnetization in the loop opposite to the direction of exter-
nal field �11�. Here, based on the extended Kirchhoff model,
magnetic elastica are described, taking into account sponta-
neous magnetization and finite values of the magnetic sus-
ceptibility of filaments.

II. MODEL

Energy of magnetic filament with spontaneous magnetiza-
tion and superparamagnetic properties reads �10,11�

E =
1

2
Cb� �d�

dl
�2

dl −
b2�� − 1�2H0

2

8�� + 1� � cos2 �dl

+� MH0 cos �dl . �1�

Here, Cb is the bending modulus, � is the tangent t�
= �cos � , sin �� angle with the external field, −Mt� is the

spontaneous magnetization of the filament per its unit length,
b is the radius of filament, and � is the magnetic permeabil-
ity of the filament. The direction of a spontaneous magneti-
zation is chosen opposite to the direction of the tangent. In
this case the straight configuration with tangent along the
external field is unstable. Such situations may be easily
achieved by the fast change of the direction of external field.

Minimizing the energy �1� with the respect to � the Euler-
Lagrange equation reads

− Cb
d2�

dl2 +
b2�� − 1�2H0

2

8�� + 1�
sin�2�� − MH0 sin � = 0. �2�

Introducing the characteristic length �=� Cb

MH0
, Eq. �2� can be

rewritten in dimensionless form �l̃= l /�, tildes further are
omitted�:

d2�

dl2 + sin � −
Cmp

Cmf
sin 2� = 0. �3�

Here, Cmp=
b2��−1�2H0

2L2

8��+1�Cb
is the magnetoelastic number corre-

sponding to the superparamagnetic component of the magne-

tization �2L is the length of the filament�, and Cmf =
MH0L2

Cb
is

the magnetoelastic number due to the spontaneous magneti-
zation of the filament.

Introducing the notation 1
2a2 =

Cmp

Cmf
, the first integral of Eq.

�3� can be written as follows:

a2��2 + �cos � − a2�2 = C2. �4�

By substituting z=cos �, Eq. �4� can be reduced to the form

a2z�2 = �1 − z2��C2 − �z − a2�2� . �5�

Different cases of the distribution of the real roots �1
��2��3��4 of the 4th order polynom on the right side of
Eq. �5� are considered in the next section.

III. EQUILIBRIUM SHAPES

�a� Let us consider the case �1=a2−C, �2=−1, �3=1,
�4=a2+C. By transformation,*aceb@tesla.sal.lv
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z − �2

z − �3
= p

t + 1

t − 1
,

Eq. �5� is reduced to the form

4a2t�2 = B2�1 − t2��1 −
1

h2 t2� , �6�

where

p2 =
��1 − �2�
��1 − �3�

��4 − �2�
��4 − �3�

, h =
p��1 − �3� + �1 − �2

p��1 − �3� − ��1 − �2�
,

B2 =
„p��3 − �1� + ��2 − �1�…„p��4 − �3� + �4 − �2…

p
.

Solution of Eq. �6� reads

t = ± sn� B

2a
l,1/h� �7�

and

cos � = �3 +

��3 − �2��sn� B

2a
l,1/h� − 1�

�p − 1�sn� B

2a
l,1/h� + p + 1

. �8�

Since the minus sign in Eq. �7� corresponds to the shift along
the filament by a half period only the plus sign is further
considered. The value of the unknown integration constant C
is found from the boundary conditions at the unclamped
ends of the filament 	d� /dl	l=±L/�=0, which gives
sn(BL / �2a�� ,1 /h)=1.

As a result, the following equation for the determination
for the integration constant is obtained:

Cmp =
2K2�1/h�

B2 , �9�

where K is the elliptic integral of the I kind.

Relations �8� and �9� give the solution of the problem for
the fixed values of the magnetoelastic numbers Cmp and
Cmf. Shapes obtained by integrating the equations for the
tangent

dx

dl
= cos �;

dy

dl
= sin �

are shown in Fig. 1 for Cmp=10 and several values of Cmf.
We see that spontaneous magnetization of the filament in-
creases the length of the hairpin leg with the direction of the
magnetization along the external field. This behavior may be
used in experiments in order to establish the presence of the
spontaneous magnetization of the filament. For small Cmf
the shapes are close to hairpins, which are characteristic for
the superparamagnetic filaments �1,10�.

�b� The case when �1=−1, �2=a2−C, �3=a2+C, �4=1 is
considered in a similar way. The corresponding family of the
shapes is shown in Fig. 2 for Cmp=10 and several values of
Cmf. Since in this case the parts of the filament with the
direction of magnetization opposite to the direction of the
field are longer, then it is clear that shapes shown in Fig. 2
should be discriminated in comparison with those shown in
Fig. 1. This can be illustrated directly by comparing the en-
ergies of the corresponding solutions. Relations �1� and �4�,
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FIG. 1. Magnetic elastica for different values of Cmf. Legs of
hairpins that have magnetization parallel to the field are longer.
Cmf =0.001 �1�; 0.1 �2�; 1 �3�. Cmp=10.
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FIG. 3. Comparison of the energies of the magnetic elastica
shown in Fig. 1 �curve 1� and in Fig. 2 �curve 2�. Cmp=10.
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FIG. 2. Magnetic elastica for different values of Cmf. Legs of
hairpins that have magnetization antiparallel to the field are longer.
Cmf =0.001 �1�; 0.1 �2�; 1 �3�. Cmp=10.
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scaling the arclength of the filament contour by L, give

E =
Cb

L
Cmp�

−1

1

„C2 + a4 − 2�cos � − a2�2
…dl . �10�

The comparison of the energies calculated according to the
relation �10� is given in Fig. 3. We see that the energy of the
filament with a collinear to the field magnetization in the
longer leg is smaller.

�c� The case �1=−1, �2=a2−C, �3=1, �4=a2+C can be
investigated in a similar way. In this case, the solution of Eq.
�9� has two branches, C�1 and C�1. Branch C�1 coin-
cides with the solution shown in Fig. 2 and C�1 coincides
with the solution shown in Fig. 1. Thus this case does not
lead to a new solution.

IV. KINK SOLUTION

In the limiting cases, when one of the magnetoelastic
numbers is large, shapes are close to the kinks of ferromag-

netic or superparamagnetic filaments. Equation �4� allows
one to obtain the kink solution for the intermediate values of
the magnetoelastic numbers. Let us look for solution when at
l→ ±� the magnetization is along the magnetic field. This
means that �→	, l→ ±�. In this case the first integral of
Eq. �5� gives C2= �1+a2�2. As a result, the equation for vari-
able z reads

a2z�2 = �1 − z��1 + z�2�1 + 2a2 − z� . �11�

Integration of Eq. �11� gives

z =

�1 + 2a2�sinh2
�1 + a2l

a
− �1 + a2�cosh2

�1 + a2l

a

sinh2
�1 + a2l

a
− �1 + a2�cosh2

�1 + a2l

a

.

�12�

Scaling the arclength with L we have

cos � =
�1 +

Cmf

Cmp
�sinh2��2Cmp + Cmfl/L� − �1 +

Cmf

2Cmp
�cosh2��2Cmp + Cmfl/L�

sinh2��2Cmp + Cmfl/L� − �1 +
Cmf

2Cmp
� · cosh2��2Cmp + Cmfl/L�

. �13�

Solution �13� gives the shape close to that given by rela-
tion �8� as it is illustrated in Fig. 4 for Cmp=10 and Cmf

=1. If at l�0 we take dy
dl =−�1−cos2 � the kink solution

gives a loop. Solution �12� in the limiting case Cmf 
Cmp
gives the kink solution for a ferromagnetic filament:

cos � = 1 − 2 tanh2��Cmfl/L� . �14�

There is an analogy between magnetic elastica and semi-
flexible polymer under the tension. Due to this solution �14�

coincides with the solution for infinitely long infinitely long
semiflexible filament in the case when the tension is applied.
It was considered, for example, when describing DNA fluc-
tuations in strongly constrained conditions �14�.

In the limit of large Cmf, two shapes of ferromagnetic
filaments corresponding to the kink may be obtained �Fig. 5�.
Both have the same energy. Nevertheless, it is possible to
make a selection on the basis of the results of the numerical
simulation, which show that the shape shown in Fig. 5 by the
solid line can be obtained as a long living transient state of
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FIG. 4. Comparison of kink and elastica shapes at Cmp=10,
Cmf =1.
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FIG. 5. Two possible shapes of kinks for the ferromagnetic
filament.
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the ferromagnetic filament, but the shape shown in Fig. 5 by
the dashed line cannot.

The algorithm of the numerical simulation of the ferro-
magnetic filament is described in �10,11�. The nonlinear
PDE’s for the tangent angle and the tension are

�,t = − �,llll −
1

2
��,l

3�,l − ���,l�,l − Cmf�sin ��,ll

− �,l�,l + �,l
2Cmf sin � ,

�,l
2� − �,ll = − �,l��,lll +

1

2
��,l�3� − Cmf�,l�sin ��,l

− Cmf��,l sin ��,l,

at the boundary conditions on the free and unclamped ends

	�,l	l=±1 = 0, 	�,l	l=±1 = 0,

	��,ll + Cmf sin ��	l=±1 = 0.

With dependence on the initial conditions, U-like or
S-like deformations develop. The sequence of the configura-
tions starting from a slightly perturbed U-like configuration
with �=−0.01 sin� 	

2 l� at Cmf =20 and magnetization antipar-
allel to the external field is shown in Fig. 6. As a result, a
loop with antiparallel to the field magnetization is formed.
The configuration formed from symmetric initial conditions
is stationary. Starting from the S-like perturbation filament,
the shape similar to the kink shown in Fig. 5 by a dashed
line, reorients along the magnetic field �Fig. 7�. Thus only
magnetic elastica with a loop may be observed in experi-
ment. Nevertheless we should note that this solution is meta-
stable and in the two-dimensional �2D� case should relax by
the motion of a loop along the filament. This shows the pos-
sibility of a rather unusual mechanism of the magnetic relax-
ation in suspension of ferromagnetic filaments.

The solutions found allow us to calculate the unstable
deformation mode of the loop. The second variation of the
energy functional �1� at Cmp=0 reads

�2E =
C

L
� 
�d��

dl
�2

− Cmf cos �0����2�dl .

Minimizing �2E
�����2dl

, the following eigenvalue problem for

operator L̂=− d2

dl2 −Cmf cos �0 is obtained:

L̂�� = ��� �15�

at boundary condition d�� /dl�±1�=0. Here, �0

=2 arcsin(ksn��Cmfl ,k�) is the elastica determined by Eq.
�3� at Cmp=0. The modulus of elliptic function k is found
from the equation K�k�=�Cmf. Since cos �0=1
−2k2sn2��Cmfl ,k� and the elliptic function dn��Cmfl ,k� sat-
isfies the equation

d2

dl2dn��Cmfl,k� + Cmf„− 2k2 sn2��Cmfl,k� + k2
…


dn��Cmfl,k� = 0,

and the boundary condition dn���Cmfl ,k��l= ±1�=0, we see
that �=−Cmf�1−k2� is the negative eigenvalue of the linear
operator L̂. Therefore, the loop of the ferromagnetic filament
is unstable with respect to the deformation mode ��
=dn��Cmfl ,k�. The shapes of the elastica and its perturba-
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FIG. 8. Loop �solid line� and its perturbation mode �dashed
line�. Cmf =20.
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FIG. 6. Establishment of a metastable loop from initial even
perturbation with ��0�=−0.01 sin�	l /2�. Configurations are shown
at dimensionless time 0.0139, 0.0278, 0.0417, and 0.0694.
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FIG. 7. Orientation of ferromagnetic filament along magne-
tic field through development of odd perturbation ��0�
=−0.01 cos�	l /2�. Configurations are shown at dimensionless time
0.0139, 0.0278, 0.0417, 0.0556, and 0.0694.
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tion by this eigenmode are shown in Fig. 8. Perturbation
mode shows that in the considered 2D case, enough short
filament should relax to straight shape by the motion along
the loop with antiparallel to the field magnetization. We
should remark that this eigenvalue vanishes for a long fila-
ment when the corresponding mode corresponds to a trans-
lation of the loop along the filament �14�. The instability of
the loop with respect to 3D perturbations accounting for the
possibility of its stabilization by applied magnetic field is an
open problem and will be considered in the future.

V. CONCLUSION

Elastica for semiflexible magnetic filaments with sponta-
neous magnetization and a finite value of magnetic suscepti-
bility are considered. It is illustrated how these solutions

transform to the solutions for ferromagnetic or superpara-
magnetic filaments when the corresponding magnetoelastic
number increases. Stability analysis of an obtained kink so-
lution shows that in suspension of ferromagnetic filaments, a
different type of magnetic relaxation by migration along the
filaments of the loops with antiparallel to the field magneti-
zation is possible.
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